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We are honored to present the Tenth Edition of  
Campbell BIOLOGY. For the last quarter century, 

Campbell BIOLOGY has been the leading college text in 
the biological sciences. It has been translated into more than 
a dozen languages and has provided millions of students 
with a solid foundation in college-level biology. This success 
is a testament not only to Neil Campbell’s original vision 
but also to the dedication of thousands of reviewers, who, 
together with editors, artists, and contributors, have shaped 
and inspired this work. Although this Tenth Edition repre-
sents a milestone, science and pedagogy are not static—as 
they evolve, so does Campbell BIOLOGY.

Our goals for the Tenth Edition include:
•	 helping students make connections visually across the di-

verse topics of biology
•	 giving students a strong foundation in scientific think-

ing and quantitative reasoning skills
•	 inspiring students with the excitement and relevance of 

modern biology, particularly in the realm of genomics

Our starting point, as always, is our commitment to 
crafting text and visuals that are accurate, are current, and 
reflect our passion for teaching and learning about biology.

New to This Edition
Here we provide an overview of the new features that we 
have developed for the Tenth Edition; we invite you to ex-
plore pages x–xxvi for more informa-
tion and examples.

•	 Make Connections Figures draw 
together topics from different chapters 
to show how they are all related in the 
“big picture.” By reinforcing fundamen-
tal conceptual connections throughout 
biology, these figures help overcome 
students’ tendencies to compartmen-
talize information.

•	 Scientific Skills Exercises in ev-
ery chapter use real data and guide 
students in learning and practicing 
data interpretation, graphing, ex-
perimental design, and math skills. 
All 56 Scientific Skills Exercises have 
assignable, automatically graded ver-
sions in MasteringBiology®.

•	 Interpret the Data Questions throughout the text en-
gage students in scientific inquiry by asking them to 
interpret data presented in a graph, figure, or table. The 
Interpret the Data Questions can be assigned and auto-
matically graded in MasteringBiology.

•	 The impact of genomics across biology is explored 
throughout the Tenth Edition with examples that reveal 
how our ability to rapidly sequence DNA and proteins is 
transforming all areas of biology, from molecular and  
cell biology to phylogenetics, physiology, and ecology. 
Chapter 5 provides a launching point for this feature in a 
new Key Concept, “Genomics and proteomics have trans-
formed biological inquiry and applications.” Illustrative ex-
amples are distributed throughout later chapters.

•	 Synthesize Your Knowledge Questions at the end of 
each chapter ask students to synthesize the material in the 
chapter and demonstrate their big-picture understanding. 
A striking photograph with a thought-provoking ques-
tion helps students see how material they learned in the 
chapter connects to their world and provides insight into 
natural phenomena.

•	 The Tenth Edition provides a range of new practice and 
assessment opportunities in MasteringBiology. Besides 
the Scientific Skills Exercises and Interpret the Data 
Questions, Solve It Tutorials in MasteringBiology en-
gage students in a multistep investigation of a “mystery” 
or open question. Acting as scientists, students must ana-
lyze real data and work through a simulated investigation. 

Preface
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In addition, Adaptive Follow-Up 
Assignments provide coaching and 
practice that continually adapt to 
each student’s needs, making ef-
ficient use of study time. Students 
can use the Dynamic Study Mod-
ules to study anytime and anywhere 
with their smartphones, tablets, or 
computers.

•	 Learning Catalytics™ allows stu-
dents to use their smartphones, 
tablets, or laptops to respond to 
questions in class.

•	 As in each new edition of Campbell 
BIOLOGY, the Tenth Edition incor-
porates new content and organi-
zational improvements. These are 
summarized on pp. viii–ix, following 
this Preface.



Our Hallmark Features
Teachers of general biology face a daunting challenge: to 
help students acquire a conceptual framework for organiz-
ing an ever-expanding amount of information. The hallmark 
features of Campbell BIOLOGY provide such a framework, 
while promoting a deeper understanding of biology and the 
process of science.

To help students distinguish the “forest from the trees,” 
each chapter is organized around a framework of three to 
seven carefully chosen Key Concepts. The text, Concept 
Check Questions, Summary of Key Concepts, and Master-
ingBiology all reinforce these main ideas and essential facts.

Campbell BIOLOGY also helps students organize and 
make sense of what they learn by emphasizing evolution 
and other unifying themes that pervade biology. These 
themes are introduced in Chapter 1 and are integrated 
throughout the book. Each chapter includes at least one 
Evolution section that explicitly focuses on evolutionary as-
pects of the chapter material, and each chapter ends with an 
Evolution Connection Question and a Write About a Theme 
Question.

Because text and illustrations are equally important for 
learning biology, integration of text and figures has been 
a hallmark of this text since the First Edition. In addition to 
the new Make Connections Figures, our popular Exploring 
Figures on selected topics epitomize this approach: Each is 
a learning unit of core content that brings together related 
illustrations and text. Another example is our Guided Tour 
Figures, which use descriptions in blue type to walk students 
through complex figures as an instructor would. Visual Or-
ganizer Figures highlight the main parts of a figure, helping 
students see key categories at a glance. And Summary  
Figures visually recap information from the chapter.

To encourage active reading of the text, Campbell  
BIOLOGY includes numerous opportunities for students to 
stop and think about what they are reading, often by putting 
pencil to paper to draw a sketch, annotate a figure, or graph 
data. Active learning questions include Make Connections 
Questions, What If? Questions, Figure Legend Questions, 
Draw It Questions, Summary Questions, and the new Syn-
thesize Your Knowledge and Interpret the Data Questions.

Finally, Campbell BIOLOGY has always featured  
scientific inquiry, an essential component of any biology 
course. Complementing stories of scientific discovery in  
the text narrative and the unit-opening interviews, our  
standard-setting Inquiry Figures deepen the ability of stu-
dents to understand how we know what we know. Scientific 
Inquiry Questions give students opportunities to practice 
scientific thinking, along with the new Scientific Skills Exer-
cises and Interpret the Data Questions.

MasteringBiology, the most widely used online assessment 
and tutorial program for biology, provides an extensive 
library of homework assignments that are graded auto-
matically. In addition to the new Scientific Skills Exercises, 
Interpret the Data Questions, Solve It Tutorials, Adaptive 
Follow-Up Assignments, and Dynamic Study Modules, 
MasteringBiology offers BioFlix® Tutorials with 3-D Anima-
tions, Experimental Inquiry Tutorials, Interpreting Data 
Tutorials, BLAST Tutorials, Make Connections Tutorials, 
Video Tutor Sessions, Get Ready for Biology, Activities, 
Reading Quiz Questions, Student Misconception Ques-
tions, 4,500 Test Bank Questions, and MasteringBiology 
Virtual Labs. MasteringBiology also includes the Campbell 
BIOLOGY eText, Study Area, and Instructor Resources. See 
pages xviii–xxi and www.masteringbiology.com for more 
details.

Our Partnership with Instructors  
and Students
A core value underlying our work is our belief in the impor-
tance of a partnership with instructors and students. One 
primary way of serving instructors and students, of course, 
is providing a text that teaches biology well. In addition, 
Pearson Education offers a rich variety of instructor and  
student resources, in both print and electronic form (see  
pp. xviii–xxiii). In our continuing efforts to improve the 
book and its supplements, we benefit tremendously from 
instructor and student feedback, not only in formal reviews 
from hundreds of scientists, but also via e-mail and other 
avenues of informal communication.

The real test of any textbook is how well it helps instruc-
tors teach and students learn. We welcome comments from 
both students and instructors. Please address your sugges-
tions to any of us:

Jane Reece
janereece@cal.berkeley.edu

Lisa Urry (Chapter 1 and Units 1–3)
lurry@mills.edu

Michael Cain (Units 4 and 5)
mcain@bowdoin.edu

Peter Minorsky (Unit 6)
pminorsky@mercy.edu

Steven Wasserman (Unit 7)
stevenw@ucsd.edu

Rob Jackson (Unit 8)
rob.jackson@stanford.edu

Preface        vii

www.masteringbiology.com


�Mechanisms of 
Evolution  

One goal of this revision was to highlight con
nections among fundamental evolutionary 
concepts. Helping meet this goal, new material 
connects Darwin’s ideas to what can be learned from phyloge-
netic trees, and a new figure (Figure 25.13) and text illustrate 
how the combined effects of speciation and extinction determine 
the number of species in different groups of organisms. The  
unit also features new material on nucleotide variability within 
genetic loci, including a new figure (Figure 23.4) that shows  
variability within coding and noncoding regions of a gene.  
Other changes enhance the storyline of the unit. For instance,  
Chapter 25 includes new text on how the rise of large eukaryotes 
in the Ediacaran period represented a monumental transition  
in the history of life—the end of a microbe-only world. Updates 
include revised discussions of the events and underlying causes 
of the Cambrian explosion and the Permian mass extinction,  
as well as new figures providing fossil evidence of key evolution-
ary events, such as the formation of plant-fungi symbioses  
(Figure 25.12). A new Make Connections Figure (Figure 23.17) 
explores the sickle-cell allele and its impact from the molecular 
and cellular levels to organisms to the evolutionary explanation 
for the allele’s global distribution in the human population.

Chapters 18–21 are extensively updated, driven by excit-
ing new discoveries based on high-throughput sequencing. 
Chapter 18 includes a new figure (Figure 18.15) on the role of 
siRNAs in chromatin remodeling. A new Make Connections 
Figure (Figure 18.27) describes four subtypes of breast cancer 
that have recently been proposed, based on gene expression 
in tumor cells. In Chapter 20, techniques that are less com-
monly used have been pruned, and the chapter has been re-
organized to emphasize the important role of sequencing. A 
new figure (Figure 20.4) illustrates next-generation sequenc-
ing. Chapter 21 has been updated to reflect new research, 
including the ENCODE project, the Cancer Genome Atlas, 
and the genome sequences of the gorilla and bonobo. A new 
figure (Figure 21.15) compares the 3-D structures of lysozyme 
and α-lactalbumin and their amino acid sequences, providing 
support for their common evolutionary origin.
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viii        New Content

This section highlights selected new content and organiza-
tional changes in Campbell BIOLOGY, Tenth Edition.

C h a p t e r  1  � Evolution, the Themes of Biology, 
and Scientific Inquiry

To help students focus on the big ideas of biology, we now 
emphasize five themes: Organization, Information, Energy 
and Matter, Interactions, and the core theme of Evolution. 
The new Figure 1.8 on gene expression equips students from 
the outset with an understanding of how gene sequences de-
termine an organism’s characteristics. Concept 1.3 has been 
reframed to more realistically reflect the scientific process, 
including a new figure on the complexity of the practice of sci-
ence (Figure 1.23). A new case study in scientific inquiry (Fig-
ures 1.24 and 1.25) deals with evolution of coloration in mice.

U
N

I
T

1  The Chemistry of Life  
New chapter-opening photos and introduc-
tory stories engage students in learning this 
foundational material. Chapter 2 has a new 
Evolution section on radiometric dating. In Chapter 5,  
there is a new Key Concept section, “Genomics and pro-
teomics have transformed biological inquiry and applications”  
(Concept 5.6), and a new Make Connections Figure, “Contri-
butions of Genomics and Proteomics to Biology” (Figure 5.26).

U
N
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2  The Cell  
Our main goal for this unit was to make the 
material more accessible to students. We have 
streamlined coverage of the cytoskeleton in 
Chapter 6 and historical aspects of the membrane model in 
Chapter 7. We have revised the photosynthesis summary fig-
ure (Figure 10.22) to incorporate a big-picture view of photo
synthesis. The new Make Connections Figure 10.23 integrates 
the cellular activities covered in Chapters 5–10 in the context 
of a single plant cell. Concept 12.3 has been streamlined, with 
a new Figure 12.17 that covers the M checkpoint as well as the 
G1 checkpoint.

U
N
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3  Genetics  
In Chapters 13–17, we have incorporated 
changes that help students make connections 
between the more abstract concepts of genet-
ics and their molecular underpinnings. For example,  
Chapter 13 includes a new figure (Figure 13.9) detailing the 

events of crossing over during prophase. Figure 14.4, showing 
alleles on chromosomes, has been enhanced to show the DNA 
sequences of both alleles, along with their biochemical and 
phenotypic consequences. A new figure on sickle-cell disease 
also connects these levels (Figure 14.17). In Chapter 17, mate-
rial on coupled transcription and translation in bacteria has 
been united with coverage of polyribosomes.

New Content



Animal Form and 
Function  

In revising this unit, we strove to enhance 
student appreciation of the core concepts and 
ideas that apply across diverse organisms and 
varied organ systems. For example, a new Make Connec-
tions Figure (Figure 40.22) highlights challenges common to 
plant and animal physiology and presents both shared and 
divergent solutions to those challenges; this figure provides 
both a useful summary of plant physiology and an introduc-
tion to animal physiology. To help students recognize the 

New Content        ix

central concept of homeostasis, figures have been revised 
across six chapters to provide a consistent organization that 
facilitates interpretation of individual hormone pathways as 
well as the comparison of pathways for different hormones. 
Homeostasis and endocrine regulation are highlighted 
by new and engaging chapter-opening photos and stories 
on the desert ant (Chapter 40) and on sexual dimorphism 
(Chapter 45), a revised presentation of the variation in tar-
get cell responses to a hormone (Figure 45.8), and a new 
figure integrating art and text on human endocrine glands 
and hormones (Figure 45.9). Many figures have been recon-
ceived to emphasize key information, including new figures 
introducing the classes of essential nutrients (Figure 41.2) 
and showing oxygen and carbon dioxide partial pressures 
throughout the circulatory system (Figure 42.29). A new 
Make Connections Figure (Figure 44.17) demonstrates the 
importance of concentration gradients in animals as well as 
all other organisms. Throughout the unit, new state-of-the-
art images and material on current and compelling topics—
such as the human stomach microbiome (Figure 41.18) and 
the identification of the complete set of human taste recep-
tors (Chapter 50)—will help engage students and encourage 
them to make connections beyond the text.

U
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8  Ecology  
For the Tenth Edition, the ecology unit 
engages students with new ideas and ex-
amples. Chapter 52 highlights the discovery 
of the world’s smallest vertebrate species. New text and a 
figure use the saguaro cactus to illustrate how abiotic and 
biotic factors limit the distribution of species (Figure 52.15). 
Greater emphasis is placed on the importance of distur-
bances, such as the effects of Hurricane Katrina on forest 
mortality. Chapter 53 features the loggerhead turtle in the 
chapter opener, Concept 53.1 (reproduction), and Concept 
53.4 (evolution and life history traits). The chapter also in-
cludes new molecular coverage: how ecologists use genetic 
profiles to estimate the number of breeding loggerhead tur-
tles (Figure 53.7) and how a single gene influences dispersal 
in the Glanville fritillary. In Chapter 54, new text and a fig-
ure highlight the mimic octopus, a recently discovered spe-
cies that illustrates how predators use mimicry (Figure 54.6). 
A new Make Connections Figure ties together population, 
community, and ecosystem processes in the arctic tundra 
(Figure 55.13). Chapter 55 also has a new opening story on 
habitat transformation in the tundra. Chapter 56 highlights 
the emerging fields of urban ecology and conservation biol-
ogy, including the technical and ethical challenges of resur-
recting extinct species. It also examines the threat posed by 
pharmaceuticals in the environment. The book ends on a 
hopeful note, charging students to use biological knowledge 
to help solve problems and improve life on Earth.

�The Evolutionary History  
of Biological Diversity  

In keeping with our Tenth Edition goals, 
we have expanded the coverage of genomic 
and other molecular studies and how they 
inform our understanding of phylogeny. Examples include 
a new Inquiry Figure (Figure 34.49) on the Neanderthal 
genome and presentation of new evidence that mutualistic 
interactions between plants and fungi are ancient. In addi-
tion, many phylogenies have been revised to reflect recent 
miRNA and genomic data. The unit also contains new mate-
rial on tree-thinking, such as a new figure (Figure 26.11) that 
distinguishes between paraphyletic and polyphyletic taxa. 
We continue to emphasize evolutionary events that underlie 
the diversity of life on Earth. For example, a new section in 
Chapter 32 discusses the origin of multicellularity in animal 
ancestors. A new Make Connections Figure (Figure 33.9) ex-
plores the diverse structural solutions for maximizing surface 
area that have evolved across different kingdoms.

U
N

I
T

6  Plant Form and Function  
In developing the Tenth Edition, we have con-
tinued to provide students with a basic under-
standing of plant anatomy and function while 
highlighting dynamic areas of plant research and the many 
important connections between plants and other organisms. 
To underscore the relevance of plant biology to society, 
there is now expanded coverage of plant biotechnology and 
the development of biofuels in Chapter 38. Other updates 
include expanded coverage of bacterial components of the 
rhizosphere (Figure 37.9), plant mineral deficiency symp-
toms (Table 37.1), evolutionary trends in floral morphol-
ogy (Chapter 38), and chemical communication between 
plants (Chapter 39). The discussion of plant defenses against 
pathogens and herbivores has been extensively revised and 
now includes a Make Connections Figure that examines 
how plants deter herbivores at numerous levels of biological 
organization, ranging from the molecular level to the com-
munity level (Figure 39.27).

U
N

I
T

7  

U
N

I
T

5  
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41
Animal Nutrition   

The Need to Feed

Dinnertime has arrived for the sea otter in Figure 41.1 (and for the crab, 
though in quite a different sense). The muscles and other organs of the crab 

will be chewed into pieces, broken down by acid and enzymes in the otter’s diges-
tive system, and finally absorbed as small molecules into the body of the otter. 
Such a process is what is meant by animal nutrition: food being taken in, taken 
apart, and taken up.   

Although dining on fish, crabs, urchins, and abalone is the sea otter’s specialty, 
all animals eat other organisms—dead or alive, piecemeal or whole. Unlike plants, 
animals must consume food for both energy and the organic molecules used to as-
semble new molecules, cells, and tissues. Despite this shared need, animals have 
diverse diets. Herbivores, such as cattle, sea slugs, and caterpillars, dine mainly 
on plants or algae. Carnivores, such as sea otters, hawks, and spiders, mostly eat 
other animals. Rats and other omnivores (from the Latin omnis, all) don’t in fact 
eat everything, but they do regularly consume animals as well as plants or algae. We 
humans are typically omnivores, as are cockroaches and crows.

The terms herbivore, carnivore, and omnivore represent the kinds of food an ani-
mal usually eats. Keep in mind, however, that most animals are opportunistic feed-
ers, eating foods outside their standard diet when their usual foods aren’t available. 

▲ Figure 41.1 How does a crab help an otter  
make fur?

K e y  C o n C e p t s

41.1 An animal’s diet must supply 
chemical energy, organic 
molecules, and essential 
nutrients

41.2 The main stages of food 
processing are ingestion, 
digestion, absorption, and 
elimination

41.3 Organs specialized for 
sequential stages of 
food processing form the 
mammalian digestive system

41.4 Evolutionary adaptations of 
vertebrate digestive systems 
correlate with diet

41.5 Feedback circuits regulate 
digestion, energy storage, and 
appetite

892    
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the headlines, a simple dietary change such as folic acid 
supplementation may be among the greatest contributors to 
human health.   

environments.            
During digestion

c o n c e p t  c h e c k  4 1 . 1

 1. all 20 amino acids are needed to make animal proteins. 
Why aren’t they all essential to animal diets?

 2. m a k e  c o n n e c t i o n s  considering the role of en-
zymes in metabolic reactions (see concept 8.4), explain 
why vitamins are required in very small amounts in the diet.

 3. w h at  i F ?  If a zoo animal eating ample food shows 
signs of malnutrition, how might a researcher determine 
which nutrient is lacking in its diet?

For suggested answers, see appendix a.

3

1

▲

Each chapter is organized around a framework of  
3 to 7 Key Concepts that focus on the big picture  
and provide a context for the supporting details.

Every chapter opens with a visually 
dynamic photo accompanied by 
an intriguing question that invites 
students into the chapter.

Make Connections Questions 
ask students to relate content 
in the chapter to material 
presented earlier in the course.

Questions throughout the 
chapter encourage students 
to read the text actively.

What if? Questions ask students 
to apply what they’ve learned.

The List of Key Concepts 
introduces the big ideas 
covered in the chapter.

After reading a Key Concept section, students 
can check their understanding using the 
Concept Check Questions. 

See the Big Picture

KEY  CONCEPTS

x        See the Big Picture
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C O N C E P T  41.3
Organs specialized for sequential stages of food processing 
form the mammalian digestive system (pp. 900–906)

Mouth Stomach

Small intestine

Lipids

Absorbed food
(except lipids)

Absorbed
water

Lymphatic system

Veins to heart

Anus

Liver

Hepatic portal vein

RectumLarge
intestine

Secretions from
gastric glands

Secretions 
from salivary 
glands Secretions from pancreas

Secretions from liver

Esophagus

?  What structural feature of the small intestine makes it better suited 
for absorption of nutrients than the stomach?

C O N C E P T  41.4
Evolutionary adaptations of vertebrate digestive systems 
correlate with diet (pp. 906–908)
•	 Vertebrate digestive systems display many evolutionary adapta-

tions associated with diet. For example, dentition, which is the 
assortment of teeth, generally correlates with diet. In a form of 
mutualism, many herbivores, including cows, have fermentation 
chambers where microorganisms digest cellulose. Herbivores 
also usually have longer alimentary canals than carnivores, re-
flecting the longer time needed to digest vegetation.

?  How does human anatomy indicate that our primate ancestors 
were not strict vegetarians?

C O N C E P T  41.5
Feedback circuits regulate digestion, energy storage, and 
appetite (pp. 908–912)
•	 Nutrition is regulated at multiple levels. Food in the alimentary 

canal triggers nervous and hormonal responses that control the 
secretion of digestive juices and that promote the movement of 
ingested material through the canal. The availability of glucose 
for energy production is regulated by the hormones insulin 
and glucagon, which control the synthesis and breakdown of 
glycogen.

•	 Vertebrates store excess calories in glycogen (in liver and muscle 
cells) and in fat (in adipose cells). These energy stores can be 
tapped when an animal expends more calories than it consumes. 
If, however, an animal consumes more calories than it needs for 
normal metabolism, the resulting overnourishment can lead to 
the serious health problem of obesity.

•	 Several hormones, including leptin and insulin, regulate appetite 
by affecting the brain’s satiety center.

?  Explain why your stomach might make growling noises when you 
skip a meal.

Summary of Key ConCeptS

•	 Animals have diverse diets. Herbivores mainly eat plants;  
carnivores mainly eat other animals; and omnivores eat both. 
In meeting their nutritional needs, animals must balance con-
sumption, storage, and use of food.

C O N C E P T  41.1
An animal’s diet must supply chemical energy, organic 
molecules, and essential nutrients (pp. 893–897)
•	 Food provides animals with energy for ATP production, carbon 

skeletons for biosynthesis, and essential nutrients—nutrients 
that must be supplied in preassembled form. Essential nutrients 
include certain amino acids and fatty acids that animals cannot 
synthesize; vitamins, which are organic molecules; and minerals, 
which are inorganic substances.

•	 Animals can suffer from two types of malnutrition: an inad-
equate intake of essential nutrients and a deficiency in sources of 
chemical energy. Studies of disease at the population level help 
researchers determine human dietary requirements.

?   How can an enzyme cofactor needed for a process that is vital to 
all animals be an essential nutrient (vitamin) for only some?

C O N C E P T  41.2
The main stages of food processing are ingestion, digestion, 
absorption, and elimination (pp. 897–900)

Chapter Review41

Undigested
material

INGESTION
(eating)

Stages of food
processing

1

DIGESTION
(enzymatic breakdown
of large molecules)

2

ABSORPTION
(uptake of nutrients
by cells)

3

ELIMINATION
(passage of undigested
materials out of the
body in feces)

4

•	 Animals differ in the ways they obtain and ingest food. Many an-
imals are bulk feeders, eating large pieces of food. Other strate-
gies include filter feeding, suspension feeding, and fluid feeding.

•	 Compartmentalization is necessary to avoid self-digestion. In 
intracellular digestion, food particles are engulfed by endocyto-
sis and digested within food vacuoles that have fused with lyso-
somes. In extracellular digestion, which is used by most animals, 
enzymatic hydrolysis occurs outside cells in a gastrovascular 
cavity or alimentary canal.

?   Propose an artificial diet that would eliminate the need for one of 
the first three steps in food processing.
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TesT Your undersTanding

LeveL 1:  KnowLedge/Comprehension

 1. Fat digestion yields fatty acids and glycerol, whereas protein 
digestion yields amino acids. Both digestive processes
 a. occur inside cells in most animals.
 b. add a water molecule to break bonds.
 c. require a low pH resulting from HCl production.
 d. consume ATP.

 2. The mammalian trachea and esophagus both connect to the
 a. pharynx.
 b. stomach.
 c. large intestine.
 d. rectum.

 3. Which of the following organs is incorrectly paired with its 
function?
 a. stomach—protein digestion
 b. large intestine—bile production
 c. small intestine—nutrient absorption
 d. pancreas—enzyme production

 4. Which of the following is not a major activity of the stomach?
 a. mechanical digestion
 b. HCl production
 c. nutrient absorption
 d. enzyme secretion

LeveL 2:  appLiCaTion/anaLYsis

 5. After surgical removal of an infected gallbladder, a person 
must be especially careful to restrict dietary intake of
 a. starch.
 b. protein.
 c. sugar.
 d. fat.

 6. If you were to jog 1 km a few hours after lunch, which stored 
fuel would you probably tap?
 a. muscle proteins
 b. muscle and liver glycogen
 c. fat in the liver
 d. fat in adipose tissue

LeveL 3:  sYnThesis/evaLuaTion

 7. D r aw  I T  Make a flowchart of the events that occur after 
partially digested food leaves the stomach. Use the following 
terms: bicarbonate secretion, circulation, decrease in acidity, 
increase in acidity, secretin secretion, signal detection. Next to 
each term, indicate the compartment(s) involved. You may use 
terms more than once.

 8. evoLuTion ConneCTion 
The human esophagus and trachea share a passage leading 
from the mouth and nasal passages, which can cause problems. 
After reviewing vertebrate evolution (see Chapter 34), explain 
how the evolutionary concept of descent with modification ex-
plains this “imperfect” anatomy.

students Go to masteringBiology for assignments, the eText, and the 
Study Area with practice tests, animations, and activities.

instructors Go to masteringBiology for automatically graded tutorials and 
questions that you can assign to your students, plus Instructor Resources.

Hummingbirds are well adapted to obtain sugary nectar from 
flowers, but they use some of the energy obtained from nectar 
when they forage for insects and spiders. Explain why this for-
aging is necessary.

For selected answers, see Appendix A.

 9. sCienTiFiC inQuirY 
In human populations of northern European origin, the dis-
order called hemochromatosis causes excess iron uptake from 
food and affects one in 200 adults. Among adults, men are ten 
times as likely as women to suffer from iron overload. Taking 
into account the existence of a menstrual cycle in humans, de-
vise a hypothesis that explains this difference.

10. wriTe aBouT a Theme: organiZaTion 
Hair is largely made up of the protein keratin. In a short essay 
(100–150 words), explain why a shampoo containing protein is 
not effective in replacing the protein in damaged hair.

11.  sYnThesiZe Your KnowLedge
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The Evolutionary Origins of Mitochondria  
and Chloroplasts
E vo l u t i o n  Mitochondria and chloroplasts display simi-

larities with bacteria that led to the endosymbiont theory, 
illustrated in Figure 6.16. This theory states that an early 
ancestor of eukaryotic cells engulfed an oxygen-using non-
photosynthetic prokaryotic cell. Eventually, the engulfed 
cell formed a relationship with the host cell in which it was 
enclosed, becoming an endosymbiont (a cell living within 
another cell). Indeed, over the course of evolution, the host 

     Lysosome is available
for fusion with another
vesicle for digestion.

4      Transport vesicle carries
proteins to plasma membrane
for secretion.

5      Plasma membrane expands
by fusion of vesicles; proteins
are secreted from cell.

6

Smooth ER

Rough ER

Plasma
membrane

Nucleus

cis Golgi

trans Golgi

to rough ER, which is also 
continuous with smooth ER.

produced by the ER flow 
in the form of transport 

vesicles to the Golgi.

types of specialized vesicles,
and vacuoles.

2

 Review: relationships among organelles of the endomembrane system.  

6.5

-

Mitochondria (singular, mitochondrion) are 

 

prokaryotes had two outer membranes, which became the 
double membranes of mitochondria and chloroplasts. Sec-
ond, like prokaryotes, mitochondria and chloroplasts con-
tain ribosomes, as well as multiple circular DNA molecules 
associated with their inner membranes. The DNA in these 

Endoplasmic
reticulum

Nuclear 
envelope

Nucleus

Engulfing of oxygen-
using nonphotosynthetic 
prokaryote, which, over 
many generations of cells, 
becomes a mitochondrion

Mitochondrion

Mitochondrion

Chloroplast

At least
one cell

Engulfing of
photosynthetic
prokaryote

Nonphotosynthetic
eukaryote

Ancestor of
eukaryotic cells (host cell)

Photosynthetic eukaryote

▲ Figure 6.16 The endosymbiont theory of the origins of  
mitochondria and chloroplasts in eukaryotic cells. According to 
this theory, the proposed ancestors of mitochondria were oxygen-using 
nonphotosynthetic prokaryotes, while the proposed ancestors of chlo-
roplasts were photosynthetic prokaryotes. The large arrows represent 
change over evolutionary time; the small arrows inside the cells show 
the process of the endosymbiont becoming an organelle, also over 
long periods of time.

To help students focus on the 
big ideas of biology, five themes 
are introduced in Chapter 1 and 
woven throughout the text:

•	Evolution

•	Organization

•	 Information

•	Energy and Matter

•	 Interactions

Test Your Understanding Questions at the 
end of each chapter are organized into 
three levels based on Bloom’s Taxonomy:

•	 Level 1: Knowledge/Comprehension

•	 Level 2: Application/Analysis

•	 Level 3: Synthesis/Evaluation

Test Bank questions and multiple-choice 
questions in MasteringBiology® are also 
categorized by Bloom’s Taxonomy.

The Summary of Key Concepts refocuses 
students on the main points of the chapter.

Summary Figures recap key information in 
a visual way. Summary of Key Concepts 
Questions check students’ understanding 
of a key idea from each concept.

 NEW!  Synthesize 
Your Knowledge 
Questions 
ask students 
to apply their 
understanding 
of the chapter 
content to  
explain an 
intriguing photo.

To reinforce the themes, every chapter ends 
with an Evolution Connection Question 
and a Write About a Theme Question.

Every chapter has a section 
explicitly relating the chapter 
content to evolution, the 
fundamental theme of biology.

THEMES

See the Big Picture        xi
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In the nucleus, DNA serves as a template for the 
synthesis of mRNA, which moves to the 
cytoplasm. See Figures 5.23 and 6.9.

Flow of Genetic Information in the Cell:
DNA      RNA      Protein (Chapters 5–7)

mRNA attaches to a ribosome, which remains free 
in the cytosol or binds to the rough ER. Proteins 
are synthesized. See Figures 5.23 and 6.10.

Proteins and membrane produced by the rough 
ER flow in vesicles to the Golgi apparatus, where 
they are processed. See Figures 6.15 and 7.9.

Transport vesicles carrying proteins pinch off 
from the Golgi apparatus. See Figure 6.15.

Some vesicles merge with the plasma membrane, 
releasing proteins by exocytosis. See Figure 7.9.

Proteins synthesized on free ribosomes stay in 
the cell and perform specific functions; examples 
include the enzymes that catalyze the reactions 
of cellular respiration and photosynthesis. See 
Figures 9.7, 9.9, and 10.19.
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 ▼ Figure 10.23

M A K E  C O N N E C T I O N S

the working Cell
This figure illustrates how a generalized plant cell 
functions, integrating the cellular activities you 
learned about in Chapters 5–10.
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In the nucleus, DNA serves as a template for the 
synthesis of mRNA, which moves to the 
cytoplasm. See Figures 5.23 and 6.9.

Flow of Genetic Information in the Cell:
DNA      RNA      Protein (Chapters 5–7)

mRNA attaches to a ribosome, which remains free 
in the cytosol or binds to the rough ER. Proteins 
are synthesized. See Figures 5.23 and 6.10.

Proteins and membrane produced by the rough 
ER flow in vesicles to the Golgi apparatus, where 
they are processed. See Figures 6.15 and 7.9.

Transport vesicles carrying proteins pinch off 
from the Golgi apparatus. See Figure 6.15.

Some vesicles merge with the plasma membrane, 
releasing proteins by exocytosis. See Figure 7.9.

Proteins synthesized on free ribosomes stay in 
the cell and perform specific functions; examples 
include the enzymes that catalyze the reactions 
of cellular respiration and photosynthesis. See 
Figures 9.7, 9.9, and 10.19.
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NEW!  Make Connections Figures pull together content 
from different chapters, providing a visual representation 
of “big picture” relationships.

Figure 5.26 Contributions  
of Genomics and  
Proteomics to Biology, p. 88

Figure 10.23 The Working  
Cell, shown at right  
and on pp. 206–207

Figure 18.27 Genomics,  
Cell-Signaling,  
and Cancer, p. 387

Figure 23.17 The Sickle-Cell 
Allele, pp. 496–497

Figure 33.9 Maximizing  
Surface Area, p. 689

Figure 39.27 Levels of Plant 
Defenses Against Herbivores,  
pp. 862–863

Figure 40.22 Life Challenges 
and Solutions in Plants and 
Animals, pp. 888–889

Figure 44.17 Ion Movement 
and Gradients, p. 987

Figure 55.13 The Working 
Ecosystem, pp. 1242–1243

Make Connections 
Figures include:

xii        Make Connections Visually



Energy Transformations in the Cell:
Photosynthesis and Cellular Respiration
(Chapters 8–10)

In chloroplasts, the process of photosynthesis uses the energy 
of light to convert CO2 and H2O to organic molecules, with 
O2 as a by-product. See Figure 10.22.

In mitochondria, organic molecules are broken down by 
cellular respiration, capturing energy in molecules of ATP, 
which are used to power the work of the cell, such as 
protein synthesis and active transport. CO2 and H2O are 
by-products. See Figures 8.9–8.11, 9.2, and 9.16.

7

8

Movement Across Cell Membranes
(Chapter 7)

By passive transport, the CO2 used in 
photosynthesis diffuses into the cell and the 
O2 formed as a by-product of photosynthesis 
diffuses out of the cell. Both solutes move 
down their concentration gradients.
See Figures 7.10 and 10.22.

In active transport, energy (usually supplied 
by ATP) is used to transport a solute against 
its concentration gradient. See Figure 7.16.

Exocytosis (shown in step 5) and endocytosis 
move larger materials out of and into the cell. 
See Figures 7.9 and 7.19.

10

Water diffuses into and out of the cell 
directly through the plasma membrane and 
by facilitated diffusion through aquaporins. 
See Figure 7.1.
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Energy Transformations in the Cell:
Photosynthesis and Cellular Respiration
(Chapters 8–10)

In chloroplasts, the process of photosynthesis uses the energy 
of light to convert CO2 and H2O to organic molecules, with 
O2 as a by-product. See Figure 10.22.

In mitochondria, organic molecules are broken down by 
cellular respiration, capturing energy in molecules of ATP, 
which are used to power the work of the cell, such as 
protein synthesis and active transport. CO2 and H2O are 
by-products. See Figures 8.9–8.11, 9.2, and 9.16.

7

8

Movement Across Cell Membranes
(Chapter 7)

By passive transport, the CO2 used in 
photosynthesis diffuses into the cell and the 
O2 formed as a by-product of photosynthesis 
diffuses out of the cell. Both solutes move 
down their concentration gradients.
See Figures 7.10 and 10.22.

In active transport, energy (usually supplied 
by ATP) is used to transport a solute against 
its concentration gradient. See Figure 7.16.

Exocytosis (shown in step 5) and endocytosis 
move larger materials out of and into the cell. 
See Figures 7.9 and 7.19.

10

Water diffuses into and out of the cell 
directly through the plasma membrane and 
by facilitated diffusion through aquaporins. 
See Figure 7.1.
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  Visit the Study Area in  
MasteringBiology for BioFlix® 3-D Animations 
in Chapters 6, 7, 9, and 10. BioFlix Tutorials can 
also be assigned in MasteringBiology.

A N I M AT I O N 

M A k e  c O N N e c T I O N s  The first enzyme that functions in gly-

colysis is hexokinase. In this plant cell, describe the entire process 

by which this enzyme is produced and where it functions, specify-

ing the locations for each step. (See Figures 5.18, 5.23, and 9.9.)
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Make Connections Questions 
Ask students to relate content 
in the chapter to material 
presented earlier in the course. 
Every chapter has at least three 
Make Connections Questions.

Make Connections Visually        xiii
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3 Chapter Review

C O N C E P T  3.2
Four emergent properties of water contribute to Earth’s 
suitability for life (pp. 45–50)
•	 Hydrogen bonding keeps water molecules close to each other, 

and this cohesion helps pull water upward in the microscopic 
water-conducting cells of plants. Hydrogen bonding is also re-
sponsible for water’s surface tension.

•	 Water has a high specific heat: Heat is absorbed when hydrogen 
bonds break and is released when hydrogen bonds form. This 
helps keep temperatures relatively steady, within limits that per-
mit life. Evaporative cooling is based on water’s high heat of 
vaporization. The evaporative loss of the most energetic water 
molecules cools a surface.

•	 Ice floats because it is less dense than liquid water. This property 
allows life to exist under the frozen surfaces of lakes and polar 
seas.

•	 Water is an unusually versatile solvent because its polar mol-
ecules are attracted to ions and polar substances that can form 

S c i e n t i f i c  S k i l l S  e x e r c i S e

How Does the Carbonate Ion Concentration of Seawater  
Affect the Calcification Rate of a Coral Reef? Scientists predict 
that acidification of the ocean due to higher levels of atmospheric CO2 
will lower the concentration of dissolved carbonate ions, which living 
corals use to build calcium carbonate reef structures. In this exercise, you 
will analyze data from a controlled experiment that examined the effect 
of carbonate ion concentration ([CO3

2-]) on calcium carbonate deposi-
tion, a process called calcification.

How the Experiment Was Done The Biosphere 2 aquarium in Ari-
zona contains a large coral reef system that behaves like a natural reef. 
For several years, a group of researchers measured the rate of calcification 
by the reef organisms and examined how the calcification rate changed 
with differing amounts of dissolved carbonate ions in the seawater.

Data from the Experiment The black data points in the graph form 
a scatter plot. The red line, known as a linear regression line, is the best-
fitting straight line for these points.  

Interpret the Data 
1. When presented with a graph of experimental data, the first step in 

analysis is to determine what each axis represents. (a) In words, ex-
plain what is being shown on the x-axis. Be sure to include the units. 
(b) What is being shown on the y-axis (including units)? (c) Which  
variable is the independent variable—the variable that was manipu-
lated by the researchers? (d) Which variable is the dependent  
variable—the variable that responded to or depended on the treat-
ment, which was measured by the researchers? (For additional infor-
mation about graphs, see the Scientific Skills Review in Appendix F 
and in the Study Area in MasteringBiology.)

2. Based on the data shown in the graph, describe in words the relation-
ship between carbonate ion concentration and calcification rate.

3. (a) If the seawater carbonate ion concentration is 270 μmol/kg, what 
is the approximate rate of calcification, and approximately how many 
days would it take 1 square meter of reef to accumulate 30 mmol of 

Interpreting a Scatter Plot with a Regression Line

calcium carbonate (CaCO3)? (b) If the seawater carbonate ion concen-
tration is 250 μmol/kg, what is the approximate rate of calcification, 
and approximately how many days would it take 1 square meter of 
reef to accumulate 30 mmol of calcium carbonate? (c) If carbonate 
ion concentration decreases, how does the calcification rate change, 
and how does that affect the time it takes coral to grow?

4. (a) Referring to the equations in Figure 3.11, determine which step of 
the process is measured in this experiment. (b) Are the results of this 
experiment consistent with the hypothesis that increased atmospheric 
[CO2] will slow the growth of coral reefs? Why or why not?

  A version of this Scientific Skills Exercise can be assigned in 
MasteringBiology.

Data from C. Langdon et al., Effect of calcium carbonate saturation state on the calci-
fication rate of an experimental coral reef, Global Biogeochemical Cycles 14:639–654 
(2000).
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Summary of Key ConCeptS

C O N C E P T  3.1
Polar covalent bonds in water molecules  
result in hydrogen bonding (p. 45)
•	 Water is a polar molecule. A hydrogen  

bond forms when the slightly negatively  
charged oxygen of one water  
molecule is attracted to the  
slightly positively charged  
hydrogen of a nearby water  
molecule. Hydrogen bonding between  
water molecules is the basis for  
water’s properties.   

D r aw  i t  Label a hydrogen bond and a polar covalent bond in this 
figure. Is a hydrogen bond a covalent bond? Explain.
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Each Scientific Skills Exercise  
is based on an experiment 
related to the chapter  
content.

Photos provide visual 
interest and context.

Each Scientific Skills Exercise 
cites the published research.

Most Scientific Skills Exercises 
use data from published 
research.

Questions build in difficulty, 
walking students through 
new skills step by step and 
providing opportunities for 
higher-level critical thinking.

Every chapter has a Scientific Skills Exercise

1. Interpreting a Pair of Bar Graphs, p. 22

2. Calibrating a Standard Radioactive Isotope 
Decay Curve and Interpreting Data, p. 33

3. Interpreting a Scatter Plot with a Regression Line, p. 54

4. Working with Moles and Molar Ratios, p. 58

5. Analyzing Polypeptide Sequence Data, p. 89

6. Using a Scale Bar to Calculate Volume and  
Surface Area of a Cell, p. 99

7. Interpreting a Scatter Plot with Two Sets of Data, p. 134

8. Making a Line Graph and Calculating a Slope, p. 155

9. Making a Bar Graph and Evaluating a Hypothesis, p. 177

10. Making Scatter Plots with Regression Lines, p. 203

11. Using Experiments to Test a Model, p. 226 

12. Interpreting Histograms, p. 248

13. Making a Line Graph and Converting Between  
Units of Data, p. 262

14. Making a Histogram and Analyzing a Distribution Pattern, p. 281

15. Using the Chi-Square (χ2) Test, p. 302

16. Working with Data in a Table, p. 316

17. Interpreting a Sequence Logo, p. 349

18. Analyzing DNA Deletion Experiments, p. 370

19. Analyzing a Sequence-Based  
Phylogenetic Tree to Understand  
Viral Evolution, p. 404

20. Analyzing Quantitative and Spatial Gene  
Expression Data, p. 420

21. Reading an Amino Acid Sequence Identity Table, p. 452

22. Making and Testing Predictions, p. 477

23. Using the Hardy-Weinberg Equation to Interpret  
Data and Make Predictions, p. 487

24. Identifying Independent and Dependent Variables,  
Making a Scatter Plot, and Interpreting Data, p. 507

25. Estimating Quantitative Data from a Graph and  
Developing Hypotheses, p. 532

26. Using Protein Sequence Data to Test an  
Evolutionary Hypothesis, p. 564

NEW!  Scientific Skills Exercises in every chapter use real 
data to build key skills needed for biology, including data 
interpretation, graphing, experimental design, and math skills.

xiv        Practice Scientific Skills



27. Making a Bar Graph and Interpreting Data, p. 584

28. Interpreting Comparisons of Genetic Sequences, p. 589

29. Making Bar Graphs and Interpreting Data, p. 623

30. Using Natural Logarithms to Interpret Data, p. 633

31. Interpreting Genomic Data and Generating  
Hypotheses, p. 651

32. Calculating and Interpreting Correlation Coefficients, p. 672

33. Understanding Experimental Design  
and Interpreting Data, p. 694

34. Determining the Equation of a Regression Line, p. 745

35. Using Bar Graphs to Interpret Data, p. 756

36. Calculating and Interpreting Temperature Coefficients, p. 784

37. Making Observations, p. 806

38. Using Positive and Negative Correlations  
to Interpret Data, p. 828

39. Interpreting Experimental Results from a Bar Graph, p. 858

40. Interpreting Pie Charts, p. 886

41. Interpreting Data from Experiments  
with Genetic Mutants, p. 912

42. Making and Interpreting Histograms, p. 932

43. Comparing Two Variables on a  
Common x-Axis, p. 967

44. Describing and Interpreting Quantitative Data, p. 975

45. Designing a Controlled Experiment, p. 1008

46. Making Inferences and Designing an Experiment, p. 1025

47. Interpreting a Change in Slope, p. 1043

48. Interpreting Data Values Expressed in Scientific Notation, p. 1076

49. Designing an Experiment Using Genetic Mutants, p. 1089

50. Interpreting a Graph with Log Scales, p. 1130

51. Testing a Hypothesis with a Quantitative Model, p. 1144

52. Making a Bar Graph and a Line Graph  
to Interpret Data, p. 1181

53. Using the Logistic Equation to Model Population Growth, p. 1194

54. Making a Bar Graph and a Scatter Plot, p. 1211

55. Interpreting Quantitative Data in a Table, p. 1240

56. Graphing Cyclic Data, p. 1273

To learn more, visit www.masteringbiology.com

NEW!  All 56 Scientific Skills Exercises from the 
text have assignable, interactive versions in 
MasteringBiology® that are automatically graded.

Practice Scientific Skills        xv
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▲ Figure 56.25 Biological magnification of PCBs in a Great 
Lakes food web. (ppm = parts per million)

I n t e r p r e t  t h e  Data  If a typical smelt weighs 225 g, what is the 
total mass of PCBs in a smelt in the Great Lakes? If an average lake trout 
weighs 4,500 g, what is the total mass of PCBs in a trout in the Great 
Lakes? Assume that a lake trout from an unpolluted source is introduced 
into the Great Lakes and smelt are the only source of PCBs in the trout’s 
diet. The new trout would have the same level of PCBs as the existing 
trout after eating how many smelt? (Assume that the trout retains 100% 
of the PCBs it consumes.)

netting and other low-technology solutions. The compli-
cated history of DDT illustrates the importance of under-
standing the ecological connections between diseases and 
communities (see Concept 54.5).

Pharmaceuticals make up another group of toxins in the 
environment, one that is a growing concern among ecolo-
gists. The use of over-the-counter and prescription drugs has 
risen in recent years, particularly in industrialized nations. 

◀ Figure 56.26 Rachel Carson. 
Through her writing and her tes-
timony before the U.S. Congress, 
biologist and author Carson helped 
promote a new environmental 
ethic. Her efforts led to a ban on 
DDT use in the United States and 
stronger controls on the use of 
other chemicals.

9/6/13   10:55 AM

Contributions of Genomics
and Proteomics to Biology
Contributions of Genomics
and Proteomics to Biology

The tools of molecular genetics and 
genomics are increasingly used by 
ecologists to identify which species 

of animals and plants are killed 
illegally. In one case, genomic 

sequences of DNA from 
illegal shipments of 

elephant tusks were 
used to track down 
poachers and pinpoint 
the territory where 
they were operating.

A major aim of evolutionary biology is to under-
stand the relationships among species, both living 
and extinct. For example, genome sequence 
comparisons have identified the hippopotamus as 
the land mammal sharing the most recent 
common ancestor with whales.

Nucleotide sequencing 
and the analysis of large 
sets of genes and  
proteins can be done 
rapidly and inexpensively 
due to advances in 
technology and informa-
tion processing. Taken 
together, genomics and 
proteomics have advanced 
our understanding of biology 
across many different fields.

Conservation Biology

Evolution

medicine.” 

Hippopotamus

Short-finned pilot whale

See Figure 22.20.

See Figure 56.9.

 

Campbell BIOLOGY, Tenth Edition, and MasteringBiology® 
offer a wide variety of ways for students to move beyond 
memorization and think like a scientist.

Learn more at  
www.masteringbiology.com

NEW!  Interpret the Data 
Questions throughout the 
text ask students to analyze 
a graph, figure, or table.

NEW!  Every Interpret the 
Data Question from the text is 
assignable in MasteringBiology.

NEW!  Solve It Tutorials engage 
students in a multi-step investigation of 
a “mystery” or open question in which 
they must analyze real data. These are 
assignable in MasteringBiology. 
Topics include:

•	 Is It Possible to Treat Bacterial Infections Without 
Traditional Antibiotics?

•	 Are You Getting the Fish You Paid For?

•	 Why Are Honey Bees Vanishing?

•	 Which Biofuel Has the Most Potential to Reduce 
our Dependence on Fossil Fuels?

•	 Which Insulin Mutations May Result in Disease?

•	 What is Causing Episodes of Muscle Weakness 
in a Patient?

xvi        Interpret Data
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Contributions of Genomics
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Contributions of Genomics
and Proteomics to Biology

The tools of molecular genetics and 
genomics are increasingly used by 
ecologists to identify which species 

of animals and plants are killed 
illegally. In one case, genomic 

sequences of DNA from 
illegal shipments of 

elephant tusks were 
used to track down 
poachers and pinpoint 
the territory where 
they were operating.

Over 90% of all plant 
species exist in a mutually 
beneficial partnership with 
fungi that are associated with 
the plants’ roots. Genome 
sequencing and analysis of 
gene expression in several 
plant-fungal pairs promise major 
advances in our understanding of such 
interactions and may have implications 
for agricultural practices.

New DNA sequencing 
techniques have allowed 
decoding of minute 
quantities of DNA found 
in ancient tissues from 
our extinct relatives, the 
Neanderthals (Homo 
neanderthalensis). 
Sequencing the Neander-
thal genome has informed 
our understanding of their 
physical appearance as well 
as their relationship with 
modern humans.

A major aim of evolutionary biology is to under-
stand the relationships among species, both living 
and extinct. For example, genome sequence 
comparisons have identified the hippopotamus as 
the land mammal sharing the most recent 
common ancestor with whales.

Nucleotide sequencing 
and the analysis of large 
sets of genes and  
proteins can be done 
rapidly and inexpensively 
due to advances in 
technology and informa-
tion processing. Taken 
together, genomics and 
proteomics have advanced 
our understanding of biology 
across many different fields.

Conservation Biology

Paleontology

Evolution

Medical Science

Species Interactions

Identifying the genetic basis for human diseases like cancer helps 
researchers focus their search for potential future treatments. 
Currently, sequencing the sets of genes expressed in an individual’s 
tumor can allow a more 
targeted approach to 
treating the cancer, a 
type of “personalized 
medicine.” 

Hippopotamus

Short-finned pilot whale

See Figure 22.20.

See Figure 56.9.

(See the Scientific Skills
Exercise in Chapter 31.)

See Figure 34.49.

 See Figures 
12.20 and 18.27.
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▼ Figure 5.26

M A K E  C O N N E C T I O N S

M A K E  C O N N E C T I O N S  Considering the examples provided 

here, describe how the approaches of genomics and proteomics 

help us to address a variety of biological questions.

c h a p t e r  5   The Structure and Function of Large Biological Molecules    89

corresponding hemoglobin polypeptide in other vertebrates. 
In this chain of 146 amino acids, humans and gorillas differ 
in just 1 amino acid, while humans and frogs, more distantly 
related, differ in 67 amino acids. In the Scientific Skills Exer-
cise, you can apply this sort of reasoning to additional spe-
cies. And this conclusion holds true as well when comparing 
whole genomes: The human genome is 95–98% identical to 
that of the chimpanzee, but only roughly 85% identical to 
that of the mouse, a more distant evolutionary relative. Mo-
lecular biology has added a new tape measure to the toolkit 
biologists use to assess evolutionary kinship.   

DNA and Proteins as Tape Measures  
of Evolution
E vo l u t i o n  We are accustomed to thinking of shared 

traits, such as hair and milk production in mammals, as evi-
dence of shared ancestry. Because DNA carries heritable in-
formation in the form of genes, sequences of genes and their 
protein products document the hereditary background of an 
organism. The linear sequences of nucleotides in DNA mol-
ecules are passed from parents to offspring; these sequences 
determine the amino acid sequences of proteins. As a result, 
siblings have greater similarity in their DNA and proteins 
than do unrelated individuals of the same species.

Given our evolutionary view of life, we can extend this 
concept of “molecular genealogy” to relationships between 
species: We would expect two species that appear to be 
closely related based on anatomical evidence (and possibly 
fossil evidence) to also share a greater proportion of their 
DNA and protein sequences than do less closely related spe-
cies. In fact, that is the case. An example is the comparison 
of the β polypeptide chain of human hemoglobin with the 

S c i E n t i f i c  S k i l l S  E x E r c i S E

Are Rhesus Monkeys or Gibbons More Closely Related to  
Humans? DNA and polypeptide sequences from closely related species 
are more similar to each other than are sequences from more distantly 
related species. In this exercise, you will look at amino acid sequence 
data for the β polypeptide chain of hemoglobin, often called β-globin. 
You will then interpret the data to hypothesize whether the monkey or 
the gibbon is more closely related to humans.

How Such Experiments Are Done Researchers can isolate the poly-
peptide of interest from an organism and then determine the amino acid 
sequence. More frequently, the DNA of the relevant gene is sequenced, 
and the amino acid sequence of the polypeptide is deduced from the 
DNA sequence of its gene.

Data from the Experiments In the data below, the letters give the 
sequence of the 146 amino acids in β-globin from humans, rhesus 

Analyzing Polypeptide Sequence Data
monkeys, and gibbons. Because a complete sequence would not fit on 
one line here, the sequences are broken into three segments. The se-
quences for the three different species are aligned so that you can com-
pare them easily. For example, you can see that for all three species, the 
first amino acid is V (valine) and the 146th amino acid is H (histidine).   

Interpret the Data 
1. Scan the monkey and gibbon sequences, letter by letter, circling any 

amino acids that do not match the human sequence. (a) How many 
amino acids differ between the monkey and the human sequences? 
(b) Between the gibbon and human?

2. For each nonhuman species, what percent of its amino acids are  
identical to the human sequence of β-globin?

3. Based on these data alone, state a hypothesis for which of these two 
species is more closely related to humans. What is your reasoning?

Species Alignment of Amino Acid Sequences of �-globin 

Human  1 VHLTPEEKSA VTALWGKVNV DEVGGEALGR LLVVYPWTQR FFESFGDLST
Monkey  1 VHLTPEEKNA VTTLWGKVNV DEVGGEALGR LLLVYPWTQR FFESFGDLSS
Gibbon  1 VHLTPEEKSA VTALWGKVNV DEVGGEALGR LLVVYPWTQR FFESFGDLST

Human  51 PDAVMGNPKV KAHGKKVLGA FSDGLAHLDN LKGTFATLSE LHCDKLHVDP
Monkey  51 PDAVMGNPKV KAHGKKVLGA FSDGLNHLDN LKGTFAQLSE LHCDKLHVDP
Gibbon  51 PDAVMGNPKV KAHGKKVLGA FSDGLAHLDN LKGTFAQLSE LHCDKLHVDP

Human  101 ENFRLLGNVL VCVLAHHFGK EFTPPVQAAY QKVVAGVANA LAHKYH
Monkey  101 ENFKLLGNVL VCVLAHHFGK EFTPQVQAAY QKVVAGVANA LAHKYH
Gibbon  101 ENFRLLGNVL VCVLAHHFGK EFTPQVQAAY QKVVAGVANA LAHKYH

4. What other evidence 
could you use to support 
your hypothesis?

  A version of this Sci-
entific Skills Exercise 
can be assigned in 
MasteringBiology.

Data from Human: http://
www.ncbi.nlm.nih.gov/protein/
AAA21113.1; rhesus mon-
key: http://www.ncbi.nlm.nih.
gov/protein/122634; gibbon: 
http://www.ncbi.nlm.nih.gov/
protein/122616

New DNA sequencing 
techniques have allowed 
decoding of minute 
quantities of DNA found 
in ancient tissues from 
our extinct relatives, the 
Neanderthals (Homo 
neanderthalensis). 
Sequencing the Neander-
thal genome has informed 
our understanding of their 
physical appearance as well 
as their relationship with 
modern humans.

Paleontology

(See the Scientific Skills

See Figure 34.49.

▶ Human ▶ Rhesus 
monkey

▶ Gibbon

c o n c e p t  c h e c k  5 . 6

 1. how would sequencing the entire genome of an organ-
ism help scientists to understand how that organism 
functioned?

 2. Given the function of Dna, why would you expect two 
species with very similar traits to also have very similar 
genomes?

For suggested answers, see appendix a.

This new Make Connections Figure  
in Chapter 5 previews some 
examples of how genomics and 
proteomics have helped shed light 
on diverse biological questions. 
These examples are explored in 
greater depth later in the text.

Selected Scientific Skills 
Exercises involve working  
with DNA or protein 
sequences.

NEW!  Throughout the Tenth Edition, new examples show 
students how our ability to sequence DNA and proteins 
rapidly and inexpensively is transforming every subfield of 
biology, from cell biology to physiology to ecology.

Explore the Impact of Genomics        xvii
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Study Anytime, Anywhere

Students can access the Study Area for 
use on their own or in a study group.

BioFlix® 3-D Animations 
explore the most 
difficult biology topics, 
reinforced with tutorials, 
quizzes, and more.

Practice Tests help students 
assess their understanding of 
each chapter, providing feedback 
for right and wrong answers.

The Study Area also includes:
Cumulative Test, MP3 Tutor 
Sessions, Videos, Activities, 
Investigations, Lab Media, Audio 
Glossary, Word Roots, Key Terms, 
Flashcards, and Art.

Get Ready for Biology helps 
students get up to speed for 
their course by covering study 
skills, basic math, terminology, 
chemistry, and biology basics.

Access the complete 
textbook online!

The Pearson eText gives students access to the text whenever and wherever 
they can access the Internet. The eText can be viewed on PCs, Macs, and 
tablets, including iPad® and Android.® The eText includes powerful interactive 
and customization functions: 

•	 Write notes

•	 Highlight text

•	 Bookmark pages

•	 Zoom

Instructors can even write notes for the class and highlight important materials 
using a tool that works like an electronic pen on a whiteboard.

•	 Click hyperlinked words  
to view definitions

•	 Search

•	 Link to media activities and quizzes

eTEXT

STUDY AREA
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How it works:

These modules can be 
accessed on smartphones, 
tablets, and computers. 
Results can be tracked in the 
MasteringBiology Gradebook.

A unique answer 
format asks students 
to indicate how 
confident they are 
about their answer.

1. Students receive an initial 
set of questions.

2. After answering each set of questions, students 
review their answers.

3. Each answer has an explanation using material 
that is taken directly from the textbook.

4. Once students review the explanations from the 
textbook, they are presented with a new set of 
questions. Students cycle through this dynamic 
process of test–learn–retest until they achieve mastery 
of the textbook material.

Learn more at www.masteringbiology.com

DYNAMIC STUDY MODULES

NEW!  Dynamic Study Modules, designed to enable students to study 
effectively on their own, help students quickly access and learn the 
information they need to be more successful on quizzes and exams.

Study Anytime, Anywhere        xix
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Learn Through Assessment
Instructors can assign self-paced MasteringBiology® tutorials that 
provide students with individualized coaching with specific hints 
and feedback on the toughest topics in the course.

1. If a student gets stuck ...

2. specific wrong-answer feedback 
appears in the purple feedback box.

3. Hints coach the student to the correct 
response.

Question sets in the 
Adaptive Follow-Up  
Assignments 
continuously adapt 
to each student’s 
needs, making 
efficient use of study 
time.

Learn more at  
www.masteringbiology.com

4. NEW!  Optional Adaptive  
Follow-Up Assignments are based 
on each student’s performance on 
the original homework assignment 
and provide additional coaching 
and practice as needed.

xx        Learn Through Assessment
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The MasteringBiology® Gradebook provides instructors with quick 
results and easy-to-interpret insights into student performance. 
Every assignment is automatically graded. Shades of red highlight 
vulnerable students and challenging assignments.

MasteringBiology offers a wide variety of tutorials that can be assigned as 
homework. For example, BioFlix Tutorials use 3-D, movie-quality Animations 
and coaching exercises to help students master tough topics outside of 
class.  Animations can also be shown in class. 

BioFlix Tutorials and 3-D Animations include:

•	 A Tour of the Animal Cell

•	 A Tour of the Plant Cell

•	 Membrane Transport

•	 Cellular Respiration

•	 Photosynthesis

•	 Mitosis

•	 Meiosis

•	 DNA Replication

•	 Protein Synthesis

•	 Mechanisms of Evolution

•	 Water Transport in Plants

•	 Homeostasis: Regulating  
Blood Sugar

•	 Gas Exchange

•	 How Neurons Work

•	 How Synapses Work

•	 Muscle Contraction

•	 Population Ecology

•	 The Carbon Cycle

NEW!  Student scores on the 
optional Adaptive Follow-Up 
Assignments are recorded 
in the gradebook and 
offer additional diagnostic 
information for instructors to 
monitor learning outcomes 
and more.
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Supplements

FOR INSTRUCTORS

NEW!  Learning Catalytics™ allows students to use their 
smartphone, tablet, or laptop to respond to questions  
in class. Visit www.learningcatalytics.com.

Instructor’s Resource DVD (IRDVD) Package 
978-0-321-83494-2 / 0-321-83494-1 
The instructor resources for Campbell Biology, Tenth Edition, are combined 
into one chapter-by-chapter resource that includes DVDs of all chapter visual 
resources. Assets include:

Instructor Resources Area in MasteringBiology® 
This area includes:

•	 Editable figures (art and photos) and 
tables from the text in PowerPoint®

•	 Prepared PowerPoint Lecture 
Presentations for each chapter, with 
lecture notes, editable figures, tables, 
and links to animations and videos

•	 250+ Instructor Animations and 
Videos, including BioFlix® 3-D 
Animations and ABC News Videos

•	 JPEG Images, including labeled and 
unlabeled art, photos from the text,  
and extra photos

•	 Digital Transparencies

•	 Clicker Questions in PowerPoint

•	 Quick Reference Guide

•	 Test Bank questions in TestGen® 
software and Microsoft® Word

•	 Art and Photos in PowerPoint

•	 PowerPoint Lecture Presentations

•	 Videos and Animations, including 
BioFlix®

•	 JPEG Images

•	 Digital Transparencies

•	 Clicker Questions

•	 Test Bank Files

•	 Lecture Outlines

•	 Learning Objectives

•	 Pre-Tests, Post-Tests, and Strategies  
for Overcoming Common  
Student Misconceptions

•	 Instructor Guides for Supplements

•	 Rubric and Tips for Grading  
Short-Answer Essays

•	 Suggested Answers for Scientific  
Skills Exercises and Short-Answer  
Essay Questions

•	 Lab Media

Customizable PowerPoints 
provide a jumpstart for 
each lecture.

Clicker Questions can be used to stimulate effective 
classroom discussions (for use with or without clickers).

All of the art, graphs, and photos from 
the book are provided with customizable 
labels. More than 1,600 photos from the 
text and other sources are included.

•	 Blackboard integration with  
single sign-on

•	 Temporary access (grace 
period)

•	 Discussion boards

•	 Email

•	 Chat and class live 
(synchronous whiteboard 
presentation)

•	 Submissions (Dropbox)

Course Management Systems 
Content is available in Blackboard.  Also, MasteringBiology 
New Design offers the usual Mastering features plus:

Printed Test Bank 
978-0-321-82371-7 / 0-321-82371-0 
This invaluable resource contains more than 4,500 
questions, including scenario-based questions and art, 
graph, and data interpretation questions. In addition to 
a print version, the Test Bank is available electronically 
in MasteringBiology, on the Instructor’s Resource DVD 
Package, within the Blackboard course management 
system, and at www.pearsonhighered.com.

Instructor Resources for Flipped Classrooms

•	 Lecture videos can be posted on MasteringBiology  
for students to view before class.

•	 Homework can be assigned in MasteringBiology  
so students come to class prepared.

•	 In-class resources: Learning Catalytics, Clicker Questions, 
Student Misconception Questions, end-of-chapter  
essay questions, and activities and case studies from  
the student supplements.
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FOR STUDENTS

Study guide, Tenth Edition 
by Martha R. Taylor, Ithaca, New York 
978-0-321-83392-1 / 0-321-83392-9 
This popular study aid provides concept maps, chapter summaries, 
word roots, and a variety of interactive activities including  
multiple-choice, short-answer essay, art labeling, and  
graph-interpretation questions.

inquiry in Action: interpreting Scientific Papers, Third Edition* 
by Ruth Buskirk, University of Texas at Austin,  
and Christopher M. Gillen, Kenyon College 
978-0-321-83417-1 / 0-321-83417-8 
This guide helps students learn how to read and understand 
primary research articles. Part A presents complete articles 
accompanied by questions that help students analyze the article. 
Related Inquiry Figures are included in the supplement. Part B 
covers every part of a research paper, explaining the aim of the 
sections and how the paper works as a whole.

Practicing Biology: A Student Workbook, Fifth Edition* 
by Jean Heitz and Cynthia Giffen, University of Wisconsin, Madison 
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1
Evolution, the Themes of 

Biology, and Scientific Inquiry    

▲ Figure 1.1  How is the dandelion adapted to its 
environment?

Inquiring About Life

The dandelions shown in Figure 1.1 send their seeds aloft for dispersal. A seed 
is an embryo surrounded by a store of food and a protective coat. The dan-

delion’s seeds, shown at the lower left, are borne on the wind by parachute-like 
structures made from modified flower parts. The parachutes harness the wind, 
which carries such seeds to new locations where conditions may favor sprouting 
and growth. Dandelions are very successful plants, found in temperate regions 
worldwide.  

An organism’s adaptations to its environment, such as the dandelion seed’s para-
chute, are the result of evolution. Evolution is the process of change that has trans-
formed life on Earth from its earliest beginnings to the diversity of organisms living 
today. Because evolution is the fundamental organizing principle of biology, it is the 
core theme of this book.

Although biologists know a great deal about life on Earth, many mysteries re-
main. For instance, what processes led to the origin of flowering among plants such 
as the ones pictured above? Posing questions about the living world and seeking 
answers through scientific inquiry are the central activities of biology, the scien-
tific study of life. Biologists’ questions can be ambitious. They may ask how a single 
tiny cell becomes a tree or a dog, how the human mind works, or how the different 

K e y  C o n c e p t s

1.1	 The study of life reveals 
common themes

1.2	 The Core Theme: Evolution 
accounts for the unity and 
diversity of life

1.3	 In studying nature, scientists 
make observations and form 
and test hypotheses

1.4	 Science benefits from a 
cooperative approach and 
diverse viewpoints
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While limited to a handful of images, Figure 1.2 reminds us 
that the living world is wondrously varied. How do biologists 
make sense of this diversity and complexity? This opening 
chapter sets up a framework for answering this question. The 
first part of the chapter provides a panoramic view of the bio-
logical “landscape,” organized around some unifying themes. 
We then focus on biology’s core theme, evolution, which ac-
counts for life’s unity and diversity. Next, we look at scientific 
inquiry—how scientists ask and attempt to answer questions 
about the natural world. Finally, we address the culture of sci-
ence and its effects on society.

forms of life in a forest interact. Many interesting questions 
probably occur to you when you are out-of-doors, surrounded 
by the natural world. When they do, you are already thinking 
like a biologist. More than anything else, biology is a quest, an 
ongoing inquiry about the nature of life.

At the most fundamental level, we may ask: What is life? 
Even a child realizes that a dog or a plant is alive, while a rock 
or a car is not. Yet the phenomenon we call life defies a sim-
ple, one-sentence definition. We recognize life by what living 
things do. Figure 1.2 highlights some of the properties and 
processes we associate with life.  

▲  Regulation. The regulation of blood 
flow through the blood vessels of this 
jackrabbit’s ears helps maintain a 
constant body temperature by 
adjusting heat exchange with the 
surrounding air.

▼ Reproduction. 
Organisms (living 
things) reproduce 
their own kind.

▲ Growth and development. 
Inherited information carried by 
genes controls the pattern of 
growth and development of organ- 
isms, such as this oak seedling.

▼ Order. This close-up of a sunflower 
illustrates the highly ordered 
structure that characterizes life.

▲  Energy processing. This 
butterfly obtains fuel in 
the form of nectar from 
flowers. The butterfly    
will use chemical energy 
stored in its food to 
power flight and other 
work.

▲  Evolutionary adaptation. The appear-
ance of this pygmy sea horse camou-
flages the animal in its environment.   
Such adaptations evolve over many 
generations by the reproductive          
success of those individuals with  
heritable traits that are best suited to 
their environments.

▲ Response to the 
environment. 
This Venus flytrap 
closed its trap 
rapidly in response 
to the environ-
mental stimulus of 
a damselfly 
landing on the 
open trap.

▲ Figure 1.2   
Some properties of life.



The array of organisms inhabiting a 
particular ecosystem is called a biological 
community. The community in our 
forest ecosystem includes many kinds 
of trees and other plants, various 
animals, mushrooms and other fungi, 
and enormous numbers of diverse 
microorganisms, which are living forms, such as bacteria, 
that are too small to see without a microscope. Each of 
these forms of life is called a species.

               ◀ 1  The Biosphere
Even from space, we can see signs of Earth’s life—in the green mosaic of the 
forests, for example. We can also see the scale of the entire biosphere, which 
consists of all life on Earth and all the places where life exists: most regions of 
land, most bodies of water, the atmosphere to an altitude of several kilometers, 
and even sediments far below the ocean floor.

      ◀ 2  Ecosystems
Our first scale change brings us to a North American forest with 
many deciduous trees (trees that lose their leaves and grow new 
ones each year). A deciduous forest is an example of an ecosystem, 
as are grasslands, deserts, and coral reefs. An ecosystem consists of 
all the living things in a particular area, along with all the nonliving 
components of the environment with which life interacts, such as 
soil, water, atmospheric gases, and light.

▶ 4  Populations
A population consists of all the individuals 
of a species living within the bounds of a 
specified area. For example, our forest includes 
a population of sugar maple trees and a 
population of white-tailed deer. A community 
is therefore the set of populations that inhabit 
a particular area.

▲ 5  Organisms
Individual living things are 
called organisms. Each of the 
maple trees and other plants in 
the forest is an organism, and 
so is each deer, frog, beetle, and 
other forest animals. The soil 
teems with microorganisms such 
as bacteria.

▶ 3  Communities

▼ Figure 1.3

Exploring Levels of Biological Organization

2      

help. Here, we’ll list five unifying themes—ways of thinking 
about life that will still hold true decades from now. These 
unifying themes are described in greater detail in the next 
few pages. We hope they will serve as touchstones as you 
proceed through this text: 
•	 Organization
•	 Information
•	 Energy and Matter
•	 Interactions
•	 Evolution

C O N C E P T  1.1
The study of life reveals common 
themes
Biology is a subject of enormous scope, and exciting new 
biological discoveries are being made every day. How can 
you organize into a comprehensible framework all the in-
formation you’ll encounter as you study the broad range of 
topics included in biology? Focusing on a few big ideas will 
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▶ 9  Organelles

▼ 6  Organs and Organ Systems

The structural hierarchy of life continues to unfold as 
we explore the architecture of more complex organisms. 
A maple leaf is an example of an organ, a body part that 
carries out a particular function in the body. 
Stems and roots are the other 
major organs of plants. 
The organs of complex 
animals and plants are 
organized into organ 
systems, each a team of 
organs that cooperate in a 
larger function. Organs consist 
of multiple tissues.

     ◀ 7  Tissues
Viewing the tissues of a leaf 
requires a microscope. Each 
tissue is a group of cells that 
work together, performing a 
specialized function. The leaf 
shown here has been cut on 
an angle. The honeycombed 
tissue in the interior of the leaf 
(left side of photo) is the main 
location of photosynthesis, the 
process that converts light energy 
to the chemical energy of sugar. 
The jigsaw puzzle–like “skin” on 
the surface of the leaf is a tissue 
called epidermis (right side of 
photo). The pores through the 
epidermis allow entry of the gas 
CO2, a raw material for sugar 
production.

▲ 8  Cells
The cell is life’s fundamental unit of 
structure and function. Some organisms are 
single cells, while others are multicellular. A 
single cell performs all the functions of life, 
while a multicellular organism has a division 
of labor among specialized cells. Here we see 
a magnified view of cells in a leaf tissue. One 
cell is about 40 micrometers (μm) across—
about 500 of them would reach across a 
small coin. As tiny as these cells are, you 
can see that each contains numerous green 
structures called chloroplasts, which are 
responsible for photosynthesis.

Chloroplasts are examples of 
organelles, the various functional 
components present in cells. This image, 
taken by a powerful microscope, shows a 
single chloroplast.

Our last scale change drops us into 
a chloroplast for a view of life at the 
molecular level. A molecule is a chemical 
structure consisting of two or more units 
called atoms, represented as balls in 
this computer graphic of a chlorophyll 
molecule. Chlorophyll is the pigment 
molecule that makes a maple leaf 
green, and it absorbs sunlight during 
photosynthesis. Within each chloroplast, 
millions of chlorophyll molecules are 
organized into systems that convert light 
energy to the chemical energy of food.

▶ 10  Molecules
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Theme: New Properties Emerge at Successive 
Levels of Biological Organization
o r ga n i z at i o n   In Figure 1.3, we zoom in from space to 

take a closer and closer look at life in a deciduous forest in 
Ontario, Canada. This journey shows the different levels of 
organization recognized by biologists: The study of life extends 
from the global scale of the entire living planet to the micro-
scopic scale of cells and molecules. The numbers in the figure 
guide you through the hierarchy of biological organization.  

Zooming in at ever-finer resolution illustrates an ap-
proach called reductionism, which reduces complex sys-
tems to simpler components that are more manageable to 
study. Reductionism is a powerful strategy in biology. For 
example, by studying the molecular structure of DNA that 
had been extracted from cells, James Watson and Francis 
Crick inferred the chemical basis of biological inheritance. 
However, although it has propelled many major discoveries, 
reductionism provides a necessarily incomplete view of life 
on Earth, as we’ll discuss next.
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Emergent Properties
Let’s reexamine Figure 1.3, beginning this time at the mo-
lecular level and then zooming out. This approach allows us 
to see novel properties emerge at each level that are absent 
from the preceding level. These emergent properties are 
due to the arrangement and interactions of parts as com-
plexity increases. For example, although photosynthesis 
occurs in an intact chloroplast, it will not take place in a 
disorganized test-tube mixture of chlorophyll and other 
chloroplast molecules. The coordinated processes of photo-
synthesis require a specific organization of these molecules 
in the chloroplast. Isolated components of living systems, 
serving as the objects of study in a reductionist approach to 
biology, lack a number of significant properties that emerge 
at higher levels of organization.

Emergent properties are not unique to life. A box of bi-
cycle parts won’t transport you anywhere, but if they are 
arranged in a certain way, you can pedal to your chosen des-
tination. Compared with such nonliving examples, however, 
biological systems are far more complex, making the emer-
gent properties of life especially challenging to study.

To explore emergent properties more fully, biologists 
today complement reductionism with systems biology, the 
exploration of a biological system by analyzing the interac-
tions among its parts. In this context, a single leaf cell can be 
considered a system, as can a frog, an ant colony, or a desert 
ecosystem. By examining and modeling the dynamic behav-
ior of an integrated network of components, systems biol-
ogy enables us to pose new kinds of questions. For example, 
we can ask how a drug that lowers blood pressure affects 
the functioning of organs throughout the human body. At 
a larger scale, how does a gradual increase in atmospheric 
carbon dioxide alter ecosystems and the entire biosphere? 
Systems biology can be used to study life at all levels.

Structure and Function
At each level of the biological hierarchy, we find a correla-
tion of structure and function. Consider the leaf shown in  
Figure 1.3: Its thin, flat shape maximizes the capture of sun-
light by chloroplasts. More generally, analyzing a biological 
structure gives us clues about what it does and how it works. 
Conversely, knowing the function of something provides 

insight into its structure and 
organization. Many examples 
from the animal kingdom show 
a correlation between structure 
and function. For example, the 
hummingbird’s anatomy al-
lows the wings to rotate at the 
shoulder, so hummingbirds 
have the ability, unique among 
birds, to fly backward or hover 

in place. While hovering, the birds can extend their long, 
slender beaks into flowers and feed on nectar. The elegant  
match of form and function in the structures of life is ex
plained by natural selection, which we’ll explore shortly.

The Cell: An Organism’s Basic Unit of Structure  
and Function
In life’s structural hierarchy, the cell is the smallest unit of 
organization that can perform all activities required for life. 
In fact, the actions of organisms are all based on the func-
tioning of cells. For instance, the movement of your eyes as 
you read this sentence results from the activities of muscle 
and nerve cells. Even a process that occurs on a global scale, 
such as the recycling of carbon atoms, is the product of 
cellular functions, including the photosynthetic activity of 
chloroplasts in leaf cells.

All cells share certain characteristics. For instance, every cell 
is enclosed by a membrane that regulates the passage of ma-
terials between the cell and its surroundings. Nevertheless, we 
recognize two main forms of cells: prokaryotic and eukaryotic. 
The cells of two groups of single-celled microorganisms— 
bacteria (singular, bacterium) and archaea (singular,  
archaean)—are prokaryotic. All other forms of life, including 
plants and animals, are composed of eukaryotic cells.

A eukaryotic cell contains membrane-enclosed organ-
elles (Figure 1.4). Some organelles, such as the DNA- 
containing nucleus, are found in the cells of all eukaryotes; 
other organelles are specific to particular cell types. For 
example, the chloroplast in Figure 1.3 is an organelle found 

Eukaryotic cell

Prokaryotic cell

Membrane

DNA
(no nucleus)

Membrane

Membrane-
enclosed organelles

DNA (throughout
nucleus)

Nucleus
(membrane-
enclosed)

Cytoplasm

1 μm

▲ Figure 1.4  Contrasting eukaryotic and prokaryotic cells in 
size and complexity.



c h a p t e r  1     Evolution, the Themes of Biology, and Scientific Inquiry        5

only in eukaryotic cells that carry out photosynthesis. In 
contrast to eukaryotic cells, a prokaryotic cell lacks a nu-
cleus or other membrane-enclosed organelles. Another dis-
tinction is that prokaryotic cells are generally smaller than 
eukaryotic cells, as shown in Figure 1.4.  

Theme: Life’s Processes Involve the 
Expression and Transmission of Genetic 
Information
i n f o r m at i o n   Within cells, structures called chromo-

somes contain genetic material in the form of DNA (deoxy-
ribonucleic acid). In cells that are preparing to divide, the 
chromosomes may be made visible using a dye that appears 
blue when bound to the DNA (Figure 1.5).  

25 μm

▲ Figure 1.5  A lung cell from a newt divides into two smaller 
cells that will grow and divide again.
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DNA double helix. This
model shows the atoms
in a segment of DNA. Made
up of two long chains (strands) 
of building blocks called
nucleotides, a DNA molecule
takes the three-dimensional
form of a double helix.

Single strand of DNA. These
geometric shapes and letters are
simple symbols for the nucleo-
tides in a small section of one
strand of a DNA molecule. Genetic
information is encoded in specific
sequences of the four types of
nucleotides. Their names are 
abbreviated A, T, C, and G. 

(b)

Nucleotide

Nucleus

Cell

DNA

▲ Figure 1.7  DNA: The genetic material.

Egg cell

Sperm cell

Nuclei containing DNA

Fertilized egg
with DNA from
both parents Embryo’s cells

with copies of
inherited DNA

Offspring with 
traits inherited 
from both parents

▲ Figure 1.6  Inherited DNA directs  
development of an organism.

DNA, the Genetic Material
Each time a cell divides, the DNA is first replicated, or cop-
ied, and each of the two cellular offspring inherits a com-
plete set of chromosomes, identical to that of the parent cell. 
Each chromosome contains one very long DNA molecule 
with hundreds or thousands of genes, each a section of the 
DNA of the chromosome. Transmitted from parents to off-
spring, genes are the units of inheritance. They encode the 
information necessary to build all of the molecules synthe-
sized within a cell, which in turn establish that cell’s identity 
and function. Each of us began as a single cell stocked with 
DNA inherited from our parents. The replication of that 
DNA during each round of cell division transmitted copies 
of the DNA to what eventually became the trillions of cells 
of our body. As the cells grew and divided, the genetic in-
formation encoded by the DNA directed our development 
(Figure 1.6).  

The molecular structure of DNA accounts for its ability 
to store information. A DNA molecule is made up of two 
long chains, called strands, arranged in a double helix. Each 
chain is made up of four kinds of chemical building blocks 
called nucleotides, abbreviated A, T, C, and G (Figure 1.7). 
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The way DNA encodes information is analogous to how we 
arrange the letters of the alphabet into words and phrases 
with specific meanings. The word rat, for example, evokes 
a rodent; the words tar and art, which contain the same let-
ters, mean very different things. We can think of nucleotides 
as a four-letter alphabet. Specific sequences of these four 
nucleotides encode the information in genes.    

Many genes provide the blueprints for making proteins, 
which are the major players in building and maintaining 
the cell and carrying out its activities. For instance, a given 
bacterial gene may specify a particular protein (an enzyme) 
required to break down a certain sugar molecule, while a 
human gene may denote a different protein (an antibody) 
that helps fight off infection.

Genes control protein production indirectly, using a re-
lated molecule called RNA as an intermediary (Figure 1.8). 
The sequence of nucleotides along a gene is transcribed into 
RNA, which is then translated into a linked series of protein 
building blocks called amino acids. These two stages result 
in a specific protein with a unique shape and function. The 
entire process, by which the information in a gene directs the 
manufacture of a cellular product, is called gene expression.  

In translating genes into proteins, all forms of life employ 
essentially the same genetic code: A particular sequence of 
nucleotides says the same thing in one organism as it does in 
another. Differences between organisms reflect differences 
between their nucleotide sequences rather than between 
their genetic codes. Comparing the sequences in several spe-
cies for a gene that codes for a particular protein can pro-
vide valuable information both about the protein and about 
the relationship of the species to each other, as you will see.

In addition to RNA molecules (called mRNAs) that are 
translated into proteins, some RNAs in the cell carry out 
other important tasks. For example, we have known for de-
cades that some types of RNA are actually components of 
the cellular machinery that manufactures proteins. Recently, 
scientists have discovered whole new classes of RNA that 
play other roles in the cell, such as regulating the function-
ing of protein-coding genes. All of these RNAs are specified 
by genes, and the production of these RNAs is also referred 
to as gene expression. By carrying the instructions for mak-
ing proteins and RNAs and by replicating with each cell 
division, DNA ensures faithful inheritance of genetic infor-
mation from generation to generation.

Genomics: Large-Scale Analysis of DNA Sequences
The entire “library” of genetic instructions that an organ-
ism inherits is called its genome. A typical human cell has 
two similar sets of chromosomes, and each set has approxi-
mately 3 billion nucleotide pairs of DNA. If the one-letter 
abbreviations for the nucleotides of a set were written in 
letters the size of those you are now reading, the genetic text 
would fill about 700 biology textbooks.

Lens 
cell

The lens of the eye (behind 
the pupil) is able to focus 
light because lens cells are 
tightly packed with transparent 
proteins called crystallin.

The crystallin 
gene is a 
section of DNA 
in a chromosome.

DNA
(part of the 
crystallin gene)

Using the information in the sequence of 
DNA nucleotides, the cell makes (transcribes) 
a specific RNA molecule called mRNA.

The cell translates the information in the 
sequence of mRNA nucleotides to make a 
protein, a series of linked amino acids.

The chain of amino 
acids folds into the 
specific shape of a 
crystallin protein. 
Crystallin proteins can 
then pack together and 
focus light, allowing 
the eye to see.

Crystallin gene

Crystallin protein
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TRANSLATION
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AC
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C

G

C
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A
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(a)

(b) How do lens cells make crystallin proteins?

▲ Figure 1.8  Gene expression: The transfer of information 
from a gene results in a functional protein.
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Theme: Life Requires the Transfer and 
Transformation of Energy and Matter

e n e r g y  a n d  m at t e r   A fundamental characteristic of 
living organisms is their use of energy to carry out life’s 
activities. Moving, growing, reproducing, and the various 
cellular activities of life are work, and work requires en-
ergy. The input of energy, primarily from the sun, and the 
transformation of energy from one form to another make 
life possible. A plant’s leaves absorb sunlight, and molecules 
within the leaves convert the energy of sunlight to the 
chemical energy of food, such as sugars, produced during 
photosynthesis. The chemical energy in the food molecules 
is then passed along by plants and other photosynthetic 
organisms (producers) to consumers. Consumers are or-
ganisms, such as animals, that feed on producers and other 
consumers.  

When an organism uses chemical energy to perform 
work, such as muscle contraction or cell division, some of 
that energy is lost to the surroundings as heat. As a result, 
energy flows one way through an ecosystem, usually enter-
ing as light and exiting as heat. In contrast, chemicals are 
recycled within an ecosystem (Figure 1.9). Chemicals that a 
plant absorbs from the air or soil may be incorporated into 
the plant’s body and then passed to an animal that eats the 
plant. Eventually, these chemicals will be returned to the 
environment by decomposers, such as bacteria and fungi, 
that break down waste products, leaf litter, and the bodies 
of dead organisms. The chemicals are then available to be 
taken up by plants again, thereby completing the cycle.

Since the early 1990s, the pace at which researchers can 
determine the sequence of a genome has accelerated at an 
astounding rate, enabled by a revolution in technology. The 
entire sequence of nucleotides in the human genome is now 
known, along with the genome sequences of many other 
organisms, including other animals and numerous plants, 
fungi, bacteria, and archaea. To make sense of the deluge of 
data from genome-sequencing projects and the growing cat-
alog of known gene functions, scientists are applying a sys-
tems biology approach at the cellular and molecular levels. 
Rather than investigating a single gene at a time, researchers 
study whole sets of genes (or other DNA) in one or more 
species—an approach called genomics. Likewise, the term 
proteomics refers to the study of sets of proteins and their 
properties. (The entire set of proteins expressed by a given 
cell or group of cells is called a proteome).

Three important research developments have made the 
genomic and proteomic approaches possible. One is “high-
throughput” technology, tools that can analyze many bio-
logical samples very rapidly. The second major development 
is bioinformatics, the use of computational tools to store, 
organize, and analyze the huge volume of data that results 
from high-throughput methods. The third development is 
the formation of interdisciplinary research teams—groups 
of diverse specialists that may include computer scientists, 
mathematicians, engineers, chemists, physicists, and, of 
course, biologists from a variety of fields. Researchers in 
such teams aim to learn how the activities of all the proteins 
and non-translated RNAs encoded by the DNA are coordi-
nated in cells and in whole organisms.

Light
energy

from the 
sun

Chemical
energy
in food

Chemicals

ENERGY FLOW

Heat lost
from the
ecosystem

Chemicals in 
plants are passed 
to organisms 
that eat the 
plants.

Plants take 
up chemicals 
from the soil 

and air.

Decomposers 
such as fungi 
and bacteria 
break down leaf 
litter and dead 
organisms, 
returning 
chemicals to the 
soil.

   
   

   
   

    
    

 CHEMICAL CYCLING

◀ Figure 1.9  Energy flow and 
chemical cycling. There is a one-
way flow of energy in an ecosystem: 
During photosynthesis, plants con-
vert energy from sunlight to chemi-
cal energy (stored in food molecules 
such as sugars), which is used by 
plants and other organisms to do 
work and is eventually lost from 
the ecosystem as heat. In contrast, 
chemicals cycle between organisms 
and the physical environment.
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Theme: From Ecosystems to Molecules, 
Interactions Are Important in Biological 
Systems
i n t e r ac t i o n s   At any level of the biological hierarchy, 

interactions between the components of the system ensure 
smooth integration of all the parts, such that they function 
as a whole. This holds true equally well for the components 
of an ecosystem and the molecules in a cell; we’ll discuss 
both as examples.

Ecosystems: An Organism’s Interactions with Other 
Organisms and the Physical Environment
At the ecosystem level, each organism interacts with other  
organisms. For instance, an acacia tree interacts with soil  
microorganisms associated with its roots, insects that live 
on it,  and animals that eat its leaves and fruit (Figure 1.10). 
In some cases, interactions between organisms are mutually 
beneficial. An example is the association between a sea turtle 
and the so-called “cleaner fish” that hover around it. The fish 
feed on parasites that would otherwise harm the turtle, while 
gaining a meal and protection from predators. Sometimes, 
one species benefits and the other is harmed, as when a lion 
kills and eats a zebra. In yet other cases, both species are 
harmed—for example, when two plants compete for a soil re-
source that is in short supply. Interactions among organisms 
help regulate the functioning of the ecosystem as a whole.  

Organisms also interact continuously with physical fac-
tors in their environment. The leaves of a tree, for example, 

absorb light from the sun, take in carbon dioxide from the 
air, and release oxygen to the air (see Figure 1.10). The en-
vironment is also affected by the organisms living there. For 
instance, in addition to taking up water and minerals from 
the soil, the roots of a plant break up rocks as they grow, 
thereby contributing to the formation of soil. On a global 
scale, plants and other photosynthetic organisms have gen-
erated all the oxygen in the atmosphere.

Molecules: Interactions Within Organisms
At lower levels of organization, the interactions between 
components that make up living organisms—organs, tissues, 
cells, and molecules—are crucial to their smooth operation. 
Consider the sugar in your blood, for instance. After a meal, 
the level of the sugar glucose in your blood rises (Figure 1.11). 
The increase in blood glucose stimulates the pancreas to re-
lease insulin into the blood. Once it reaches liver or muscle 
cells, insulin causes excess glucose to be stored in the form 
of a very large carbohydrate called glycogen, reducing blood 
glucose level to a range that is optimal for bodily functioning. 
The lower blood glucose level that results no longer stimu-
lates insulin secretion by pancreas cells. Some sugar is also 
used by cells for energy: When you exercise, your muscle cells 
increase their consumption of sugar molecules.  

Interactions among the body’s molecules are responsible 
for most of the steps in this process. For instance, like most 
chemical activities in the cell, those that either decompose 
or store sugar are accelerated at the molecular level (cata-
lyzed) by proteins called enzymes. Each type of enzyme 

Sunlight

O2

CO2

Leaves absorb light 
energy from the sun. Leaves take in 

carbon dioxide 
from the air and 
release oxygen.

Animals eat leaves 
and fruit from the 
tree, returning 
nutrients and 
minerals to the  
soil in their waste 
products.

Leaves fall to the 
ground and are 
decomposed by 
organisms that 
return minerals 
to the soil.

Water and 
minerals in the 
soil are taken 
up by the 
tree through 
its roots. 

▶ Figure 1.10  Interactions of an  
African acacia tree with other organisms 
and the physical environment.
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damaged, structures in the blood called platelets begin to 
aggregate at the site. Positive feedback occurs as chemicals 
released by the platelets attract more platelets. The platelet 
pileup then initiates a complex process that seals the wound 
with a clot.

Feedback is a regulatory motif common to life at all 
levels, from the molecular level through ecosystems and 
the biosphere. Interactions between organisms can affect 
system-wide processes like the growth of a population. And 
as we’ll see, interactions between individuals not only affect 
the participants, but also affect how populations evolve over 
time.

Evolution, the Core Theme of Biology
Having considered four of the unifying themes that run 
through this text (organization, information, energy and 
matter, and interactions), let’s now turn to biology’s core 
theme—evolution. Evolution is the one idea that makes 
logical sense of everything we know about living organisms. 
As we will see in Units 4 and 5 of this text, the fossil record 
documents the fact that life has been evolving on Earth for 
billions of years, resulting in a vast diversity of past and pres-
ent organisms. But along with the diversity are many shared 
features. For example, while sea horses, jackrabbits, hum-
mingbirds, and giraffes all look very different, their skeletons 
are organized in the same basic way. The scientific explana-
tion for this unity and diversity—as well as for the adapta-
tion of organisms to their environments—is evolution: the 
concept that the organisms living on Earth today are the 
modified descendants of common ancestors. In other words, 
we can explain the sharing of traits by two organisms with 
the premise that the organisms have descended from a com-
mon ancestor, and we can account for differences with the 
idea that heritable changes have occurred along the way. 
Many kinds of evidence support the occurrence of evolution 
and the theory that describes how it takes place. In the next 
section, we’ll consider the fundamental concept of evolution 
in greater detail.

catalyzes a specific chemical reaction. In many cases, these 
reactions are linked into chemical pathways, each step with 
its own enzyme. How does the cell coordinate its various 
chemical pathways? In our example of sugar management, 
how does the cell match fuel supply to demand, regulating 
its opposing pathways of sugar consumption and storage? 
The key is the ability of many biological processes to self-
regulate by a mechanism called feedback.

In feedback regulation, the output, or product, of a pro-
cess regulates that very process. The most common form of 
regulation in living systems is negative feedback, a loop in 
which the response reduces the initial stimulus. As seen in 
the example of insulin signaling (see Figure 1.11), the uptake 
of glucose by cells (the response) decreases blood glucose 
levels, eliminating the stimulus for insulin secretion and 
thereby shutting off the pathway. Thus, the output of the 
process negatively regulates that process.

Though less common than processes regulated by nega-
tive feedback, there are also many biological processes 
regulated by positive feedback, in which an end product 
speeds up its own production. The clotting of your blood 
in response to injury is an example. When a blood vessel is 
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▲ Figure 1.11  Feedback regulation. The human body regulates 
the use and storage of glucose, a major cellular fuel derived from food. 
This figure shows negative feedback: The response (glucose uptake by 
cells) decreases the high glucose levels that provide the stimulus for 
insulin secretion, thus negatively regulating the process.

C o n c e p t  C h e ck   1 . 1

	 1.	 Starting with the molecular level in Figure 1.3, write a 
sentence that includes components from the previous 
(lower) level of biological organization, for example: “A 
molecule consists of atoms bonded together.” Continue 
with organelles, moving up the biological hierarchy.

	 2.	 Identify the theme or themes exemplified by (a) the 
sharp quills of a porcupine, (b) the development of a 
multicellular organism from a single fertilized egg, and 
(c) a hummingbird using sugar to power its flight.

	 3.	 w h at  IF  ?   For each theme discussed in this section, 
give an example not mentioned in the text.

For suggested answers, see Appendix A.




